宇電人工智能(ArtificialInligence),英文縮寫為AI。它是研究、開發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統(tǒng)的一門新的技術科學。
廈門宇電人工智能是計算機科學的一個分支,它企圖了解智能的實質,并生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統(tǒng)等。人工智能從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智能帶來的科技產品,將會是人類智慧的“容器”。
廈門宇電人工智能可以對人的意識、思維的信息過程的模擬。人工智能不是人的智能,但能像人那樣思考、也可能超過人的智能。
廈門宇電人工智能是一門極富挑戰(zhàn)性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智能是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智能研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種“復雜工作”的理解是不同的。
廈門宇電 人工智能的定義可以分為兩部分,即“人工”和“智能”。“人工”比較好理解,爭議性也不大。有時我們會要考慮什么是人力所能及制造的,或者人自身的智能程度有沒有高到可以創(chuàng)造人工智能的地步,等等。但總的來說,“人工系統(tǒng)”就是通常意義下的人工系統(tǒng)。
關于什么是“智能”,就問題多多了。這涉及到其它諸如意識(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無意識的思維(UNCONSCIOUS_MIND))等等問題。人*了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成的人智能的必要元素也了解有限,所以就很難定義什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及對人的智能本身的研究。其它關于動物或其它人造系統(tǒng)的智能也普遍被認為是人工智能相關的研究課題。
廈門宇電人工智能在計算機領域內,得到了愈加廣泛的重視。并在機器人,經濟政治決策,控制系統(tǒng),仿真系統(tǒng)中得到應用。
尼爾遜教授對人工智能下了這樣一個定義:“人工智能是關于知識的學科――怎樣表示知識以及怎樣獲得知識并使用知識的科學。”而另一個美國麻省理工學院的溫斯頓教授認為:“人工智能就是研究如何使計算機去做過去只有人才能做的智能工作。”這些說法反映了人工智能學科的基本思想和基本內容。即人工智能是研究人類智能活動的規(guī)律,構造具有一定智能的人工系統(tǒng),研究如何讓計算機去完成以往需要人的智力才能勝任的工作,也就是研究如何應用計算機的軟硬件來模擬人類某些智能行為的基本理論、方法和技術。
廈門宇電人工智能是計算機學科的一個分支,二十世紀七十年代以來被稱為世界三大技術之一(空間技術、能源技術、人工智能)。也被認為是二十一世紀三大技術(基因工程、納米科學、人工智能)之一。這是因為近三十年來它獲得了迅速的發(fā)展,在很多學科領域都獲得了廣泛應用,并取得了豐碩的成果,人工智能已逐步成為一個獨立的分支,無論在理論和實踐上都已自成一個系統(tǒng)。
廈門宇電人工智能是研究使計算機來模擬人的某些思維過程和智能行為(如學習、推理、思考、規(guī)劃等)的學科,主要包括計算機實現(xiàn)智能的原理、制造類似于人腦智能的計算機,使計算機能實現(xiàn)更高層次的應用。人工智能將涉及到計算機科學、心理學、哲學和語言學等學科??梢哉f幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智能與思維科學的關系是實踐和理論的關系,人工智能是處于思維科學的技術應用層次,是它的一個應用分支。從思維觀點看,人工智能不于邏輯思維,要考慮形象思維、靈感思維才能促進人工智能的突破性的發(fā)展,數(shù)學常被認為是多種學科的基礎科學,數(shù)學也進入語言、思維領域,人工智能學科也必須借用數(shù)學工具,數(shù)學不僅在標準邏輯、模糊數(shù)學等范圍發(fā)揮作用,數(shù)學進入人工智能學科,它們將互相促進而更快地發(fā)展。
研究價值編輯
具有人工智能的機器人
例如繁重的科學和工程計算本來是要人腦來承擔的,如今計算機不但能完成這種計算,而且能夠比人腦做得更快、更準確,因此當代人已不再把這種計算看作是“需要人類智能才能完成的復雜任務”,可見復雜工作的定義是隨著時代的發(fā)展和技術的進步而變化的,人工智能這門科學的具體目標也自然隨著時代的變化而發(fā)展。它一方面不斷獲得新的進展,另一方面又轉向更有意義、更加困難的目標。
通常,“機器學習”的數(shù)學基礎是“統(tǒng)計學”、“信息論”和“控制論”。還包括其他非數(shù)學學科。這類“機器學習”對“經驗”的依賴性很強。計算機需要不斷從解決一類問題的經驗中獲取知識,學習策略,在遇到類似的問題時,運用經驗知識解決問題并積累新的經驗,就像普通人一樣。我們可以將這樣的學習方式稱之為“連續(xù)型學習”。但人類除了會從經驗中學習之外,還會創(chuàng)造,即“跳躍型學習”。這在某些情形下被稱為“靈感”或“頓悟”。一直以來,計算機zui難學會的就是“頓悟”?;蛘咴賴栏褚恍﹣碚f,計算機在學習和“實踐”方面難以學會“不依賴于量變的質變”,很難從一種“質”直接到另一種“質”,或者從一個“概念”直接到另一個“概念”。正因為如此,這里的“實踐”并非同人類一樣的實踐。人類的實踐過程同時包括經驗和創(chuàng)造。
這是智能化研究者夢寐以求的東西。
2013年,帝金數(shù)據(jù)普數(shù)中心數(shù)據(jù)研究員S.CWANG開發(fā)了一種新的數(shù)據(jù)分析方法,該方法導出了研究函數(shù)性質的新方法。作者發(fā)現(xiàn),新數(shù)據(jù)分析方法給計算機學會“創(chuàng)造”提供了一種方法。本質上,這種方法為人的“創(chuàng)造力”的模式化提供了一種相當有效的途徑。這種途徑是數(shù)學賦予的,是普通人無法擁有但計算機可以擁有的“能力”。從此,計算機不僅精于算,還會因精于算而精于創(chuàng)造。計算機學家們應該斬釘截鐵地剝奪“精于創(chuàng)造”的計算機過于全面的操作能力,否則計算機真的有一天會“反捕”人類。
當回頭審視新方法的推演過程和數(shù)學的時候,作者拓展了對思維和數(shù)學的認識。數(shù)學簡潔,清晰,可靠性、模式化強。在數(shù)學的發(fā)展*,處處閃耀著數(shù)學大師們創(chuàng)造力的光輝。這些創(chuàng)造力以各種數(shù)學定理或結論的方式呈現(xiàn)出來,而數(shù)學定理zui大的特點就是:建立在一些基本的概念和公理上,以模式化的語言方式表達出來的包含豐富信息的邏輯結構。應該說,數(shù)學是zui單純、zui直白地反映著(至少一類)創(chuàng)造力模式的學科。
發(fā)展階段編輯
1956年夏季,以麥卡賽、明斯基、羅切斯特和申農等為首的一批有遠見卓識的年輕科學家在一起聚會,共同研究和探討用機器模擬智能的一系列有關問題,并提出了“人工智能”這一術語,它標志著“人工智能”這門新興學科的正式誕生。IBM公司“深藍”電腦擊敗了人類的世界象棋*更是人工智能技術的一個表現(xiàn)。
從1956年正式提出人工智能學科算起,50多年來,取得長足的發(fā)展,成為一門廣泛的交叉和前沿科學??偟恼f來,人工智能的目的就是讓計算機這臺機器能夠像人一樣思考。如果希望做出一臺能夠思考的機器,那就必須知道什么是思考,更進一步講就是什么是智慧。什么樣的機器才是智慧的呢?科學家已經作出了汽車,火車,飛機,收音機等等,它們模仿我們身體器官的功能,但是能不能模仿人類大腦的功能呢?到目前為止,我們也僅僅知道這個裝在我們天靈蓋里面的東西是由數(shù)十億個神經細胞組成的器官,我們對這個東西知之甚少,模仿它或許是天下zui困難的事情了。
當計算機出現(xiàn)后,人類開始真正有了一個可以模擬人類思維的工具,在以后的歲月中,無數(shù)科學家為這個目標努力著。如今人工智能已經不再是幾個科學家的了,*幾乎所有大學的計算機系都有人在研究這門學科,學習計算機的大學生也必須學習這樣一門課程,在大家不懈的努力下,如今計算機似乎已經變得十分聰明了。例如,1997年5月,IBM公司研制的深藍(DEEPBLUE)計算機戰(zhàn)勝了象棋大師卡斯帕洛夫(KASPAROV)。大家或許不會注意到,在一些地方計算機幫助人進行其它原來只屬于人類的工作,計算機以它的高速和準確為人類發(fā)揮著它的作用。人工智能始終是計算機科學的前沿學科,計算機編程語言和其它計算機軟件都因為有了人工智能的進展而得以存在。